Topic 8

Audio Modeling by
Hidden Markov Models

Structure in Spectrograms

- Spectral structure
- Temporal structure

Time

An HMM Example

- A dishonest casino has two dice:
- A fair dice

$\because 0$

$P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$

- A loaded dice
$P(1)=P(2)=P(3)=P(4)=P(5)=1 / 10 ; P(6)=1 / 2$
- The casino randomly starts with one dice.
- The casino randomly switches the dice once every 20 turns, on average.

My Dishonest Casino Model

$P($ first dice $=F)=0.5 ; P($ first dice $=L)=0.5$

Finite-state HMM

- A finite set of states $\{1, \ldots, N\}$
- The initial probability of states $\Pi=\left\{\pi_{1}, \ldots, \pi_{N}\right\}$
- π_{i} is the probability of starting with state i.
- $\sum_{i} \pi_{i}=1$
- State transition probabilities, $\boldsymbol{A}=\left\{a_{i j}\right\}$
- $a_{i j}$ is the probability of going from state i to j
- $\sum_{j} a_{i j}=1$
- An emission (observation) alphabet $\left\{e_{1}, \ldots, e_{M}\right\}$
- Emission probabilities, $\boldsymbol{B}=\left\{b_{i j}\right\}$
- $b_{i j}$ is the probability of observing e_{j} when at state i
- $\sum_{j} b_{i j}=1$

Markovian Property

- If the current state is known, future states do not depend on previous states.
- I.e., what I'm going to do next depends only on where I am now, NOT on how I got here.
- Memory-less

State Space Representation

Probabilistic Graphical Model Representation

- Let s_{t} be the state at time $t, t=1, \ldots, T$.
- s_{t} takes values of $\{1, \ldots, N\}$
- Let o_{t} be the observation at time t.
- o_{t} takes values of $\left\{e_{1}, \ldots, e_{M}\right\}$

Each node is a
random variable

My Dishonest Casino Model

- The states (i.e., which dice is used) are hidden.
- We only observe a sequence of rolls, say

$$
O=(3,6,5,1,6,6,3,6)
$$

- If the fair dice is red and the loaded dice is blue, then the states are not hidden anymore.

Key Problems for HMM

- Given: observation sequence $O=\left(o_{1}, \ldots, o_{T}\right)$, and HMM model $\lambda=$ $<\Pi, A, B>$
- 1) Evaluation
- What is the probability of the observation sequence, $P(O ; \lambda)$, given the model λ ? Also called the likelihood of model to explain the observation.
- 2) Decoding
- What sequence of states $S=\left(s_{1}, \ldots, s_{T}\right)$ best explains the observation, i.e., maximizes $P(0, S ; \lambda)$?
- 3) Learning
- Which model $\lambda=\langle\boldsymbol{\Pi}, \boldsymbol{A}, \boldsymbol{B}\rangle$ can maximize $P(O ; \lambda)$?

Evaluation

- Given observation O and HMM $\lambda=<\boldsymbol{\Pi}, \boldsymbol{A}, \boldsymbol{B}>$, evaluate $P(0 ; \lambda)$
- Helps choose the best HMM model

Naïve way to calculate $P(O ; \lambda)$

$$
P(O ; \lambda)=\sum_{\text {all possible state sequences } \mathrm{S}} P(O, S ; \lambda)
$$

- How many possible sequences?
- Sequence length $=T$; state space size $=N$
- N^{T}
- Too slow, often intractable!
- We use the forward algorithm: $O\left(N^{2} T\right)$

The Forward Algorithm

- Idea: Build a trellis that captures all paths through the model so we can reuse probabilities from shared path segments.

The Idea in Math

$$
\begin{gathered}
P\left(O_{1: T}\right)=\sum_{s_{T}} P\left(O_{1: T}, s_{T}\right) \\
=\sum_{S_{T}} \sum_{S_{T-1}} P\left(O_{1: T-1}, o_{T}, s_{T}, s_{T-1}\right) \quad \text { Recursion! } \\
=\sum_{\substack{\text { Transition } \\
\text { probability }}}^{P\left(O_{1: T-1}, s_{T-1}\right)} P\left(s_{T} \mid s_{T-1}\right) P\left(o_{T} \mid s_{T}\right) \\
\begin{array}{c}
\text { Emission } \\
\text { probability }
\end{array}
\end{gathered}
$$

The Forward Algorithm

- We compute it by induction
- Let $\alpha_{t}(j)=P\left(O_{1: t}, s_{t}=j\right)$
- Initialization: $\alpha_{1}(j)=\pi_{j} P\left(o_{1} \mid s_{1}=j\right)$, for $j=1, \ldots N$
- (equivalently: $\alpha_{1}(j)=\pi_{j} b_{j o_{1}}$, for $j=1, \ldots N$)
- Induction: for $t=2, \ldots, T$ and $j=1, \ldots, N$

$$
\alpha_{t}(j)=\left[\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j}\right] b_{j o_{t}}
$$

- Termination: $P(O ; \lambda)=\sum_{j=1}^{N} \alpha_{T}(j)$

Decoding

- Given observation $O=\left(o_{1}, \ldots, o_{T}\right)$ and an HMM model $\lambda=<$ $\boldsymbol{\Pi}, \boldsymbol{A}, \boldsymbol{B}>$, find the state sequence $S=\left(s_{1}, \ldots, s_{T}\right)$ that best explains the observation, i.e., maximizes $P(0, S)$.
- Naïve algorithm
- Try all possible sequences and choose the best one
- Too many possible sequences: N^{T}
- Viterbi algorithm
- Reuse probabilities from shared paths
- $O\left(N^{2} T\right)$

The Idea in Math

- Very similar to the forward algorithm

$$
\begin{aligned}
& \quad \max _{S_{1: T}} P\left(O_{1: T}, S_{1: T}\right) \\
& =\max _{S_{1: T}} P\left(o_{T}, S_{T} \mid O_{1: T-1}, S_{1: T-1}\right) P\left(O_{1: T-1}, S_{1: T-1}\right) \\
& =\max _{S_{1: T}} P\left(o_{T}, S_{T} \mid s_{T-1}\right) P\left(O_{1: T-1}, S_{1: T-1}\right) \\
& =\max _{S_{T}} P\left(o_{T} \mid s_{T}\right) \max _{S_{1: T-1}} P\left(s_{T} \mid s_{T-1}\right) P\left(O_{1: T-1}, S_{1: T-1}\right) \\
& \quad \uparrow \quad \begin{array}{l}
\text { Emission } \quad \text { Transition } \\
\\
\\
\\
\\
\text { probability probability }
\end{array}
\end{aligned}
$$

The Viterbi Algorithm

- Let $v_{t}(j)=\max _{s_{1: t-1}} P\left(O_{1: t}, s_{1: t-1}, s_{t}=j\right)$
- Initialization: $v_{1}(j)=\pi_{j} P\left(o_{1} \mid s_{1}=j\right)$, for $j=1, \ldots N$
- (equivalently: $v_{1}(j)=\pi_{j} b_{j o_{1}}$, for $j=1, \ldots N$)
- Induction: for $t=2, \ldots, T$ and $j=1, \ldots, N$

$$
\begin{gathered}
v_{t}(j)=\left[\max _{i} v_{t-1}(i) a_{i j}\right] b_{j o_{t}} \\
\operatorname{prev}_{t}(j)=\underset{i}{\arg \max v_{t-1}(i) a_{i j}}
\end{gathered}
$$

- Termination: $P(O, S ; \lambda)=\max _{j} v_{T}(j)$
- Trace back from $\arg \max v_{T}(j)$ to get the best path

Learning

- Given observation $O=\left(o_{1}, \ldots, o_{T}\right)$, what are the best parameters of an HMM model $\lambda=<\boldsymbol{\Pi}, \boldsymbol{A}, \boldsymbol{B}>$ that can maximize $P(0 ; \lambda)$?
- The parameters $\lambda=<\boldsymbol{\Pi}, \boldsymbol{A}, \boldsymbol{B}>$ are unknown
- The hidden states $S=\left(s_{1}, \ldots, s_{T}\right)$ are unknown
- Baum-Welch algorithm
- EM algorithm!

Continuous Observations

- In the previous slides, we assumed a discrete emission (observation) alphabet $\left\{e_{1}, \ldots, e_{M}\right\}$.
- What if the observation alphabet is continuous, e.g., real-valued?
- How do we represent emission probabilities \boldsymbol{B} ?
- Parameterized model $p\left(o_{t} \mid s_{t}\right)$

Audio Modeling by HMMs

- Speech recognition
- States: phonemes
- Observation: MFCC features of audio frames
- Transition probabilities: phonemes transition
- Emission probabilities: phoneme -> audio spectrum
- Recognition: decoding states from observed audio frames

Audio Modeling by HMMs

- Chord recognition
- States: chords
- Observation: some feature representation of audio spectra
- Transition probabilities: chord progression
- Emission probabilities: chord -> audio spectrum
- Recognition: decoding chord labels from observed audio frames

Audio Modeling by HMMs

- Refining pitch detection results
- States: pitch candidates (e.g., all discretized freq. between $65 \mathrm{~Hz}-370 \mathrm{~Hz}$)
- Observation: audio spectra
- Transition probabilities: pitches tend to change smoothly
- Emission probabilities: the likelihood of each pitch candidate, P(audio frame | pitch candidate)
- Refinement: decoding pitches from observation

Infinite-state HMM

- There are infinitely many states, also called hidden Markov process.
- Summations over states in finite-state HMMs become to integrations over states.
- When the states are high-dimensional, integration is not easy.
- Use Monte Carlo methods instead

An Example: Audio-score Alignment

An Example: Audio-score Alignment

Inference by
particle filtering

Limitations of HMM

- Only models short-time dependencies
- Audio signals can have longer dependencies, e.g., rhythmic structure
- Higher-order HMM
- Only one sequence of states
- Audio with multiple sound sources?
- Factorial HMM
- Generative model
- May not be ideal for some tasks
- Conditional Random Field (CRF)

